Latest News Posts

Social
Latest Forum Posts

Corsair Force F90 90GB Solid-State Drive Review
Bookmark and Share

corsair_force_f90_90gb_ssd_030211.gif
Print
by Robert Tanner on March 2, 2011 in Solid-State Drives

There couldn’t be a better time than the present to purchase an SSD, and on the same token, it’s also a strange time. Performance drives cost the same as budget drives, and a perfect example of this is Corsair’s Force F90. It’s priced-right, offers incredible performance, and makes perfect use of its SandForce SF-1200 controller.

Test System & Methodology

As with other models, Corsair uses a plastic clamshell package to protect the drive during shipment. Behind the clamshell is a solid steel bracket that not only gives the drive armor plating protection during shipment, but serves double duty as the 2.5″ to 3.5″ bay adapter. Out of the myriad of adapter kit designs we have seen we prefer the simplicity and durability of this particular adapter the most. As for the SSD itself the housing is black brushed aluminum and is solid, but light enough to be mounted in a variety of situations if needed.

Corsair Force F90 90GB Solid-State Drive Corsair Force F90 90GB Solid-State Drive

Test System & Methodology

At Techgage, we strive to make sure our results are as accurate and real-world applicable as possible. We list most of the steps and processes involved in setting up and conducting our benchmarking process below, but in the interests of brevity we can’t mention every last detail. If there is any pertinent information that we’ve inadvertently omitted or you have any thoughts, suggestions, or critiques, then please feel free to email us or post directly in our forums. This site exists for readers like you and we value your input.

The table below lists the hardware used in our current storage-testing machine, which remains unchanged throughout all of our testing, with the obvious exception of the storage device. Each drive used for the sake of comparison is also listed here.

Component
Techgage Hard Drive Test System
Processor
Intel Core 2 Quad Q6600 – 2.4GHz Quad-Core
Motherboard
Gigabyte GA-EP35-DS4
Memory
4GB Corsair 800MHz CAS 4
Graphics
Foxconn 8800 GTS 320MB
Audio
On-Board Audio
Storage
Corsair Force F90 90GB
Corsair Nova V128 128GB
Intel X25-M G1 80GB
Kingston SSDNow V Series 40GB
Kingston SSDNow V Series 128GB
Kingston SSDNow V+ Series 128GB
OCZ RevoDrive 120GB PCI Express
OCZ Summit 60GB
OCZ Vertex Turbo 120GB
OCZ Vertex 2 100GB
Seagate Barracuda 7200.10 320GB
Western Digital SiliconEdge Blue 256GB
Power Supply
PC Power & Cooling Quad Silencer 750W
Cooling
Arctic Freezer 7 Pro
Et cetera
Lite-on DVD-RW
Windows 7 Ultimate 64-bit


Our Windows 7 Desktop for SSD Testing

When preparing our SSD testbed for testing we follow these guidelines:

    General Guidelines

  • No power-saving options are enabled in the motherboard’s BIOS.
  • AHCI is enabled in the motherboard’s BIOS for best performance.
  • HPET is configured to 64bit mode in the BIOS.
  • Only Cold boots are utilized; for the purposes of our testing a boot is defined as the moment the power button is depressed to the moment the last systray icon and program has fully loaded after reaching the Windows 7 desktop. Auto-login is enabled.
    Windows 7 Optimizations

  • User Account Control (UAC) is disabled.
  • The OS is kept clean; no scrap files are left in between runs.
  • Windows Update and OS power-saving settings are disabled.

All solid-state drives start in a factory fresh or HDDErase fresh state prior to testing. Windows 7 is manually installed and then SYSmark 2007 Preview is installed. Due to the nature of SYSmark, Windows 7 must be reinstalled upon completion of testing in order for many programs to function normally and benchmark consistently. As not all SSDs support TRIM technology, this process is important and ensures all of the drives are in a “dirtied” state before we collect the benchmark results.

For the time-being, cloned test images are not used as these can result in non-aligned partitions, which if it occurs will result in degraded SSD performance. Just as with Windows XP’s default sector offset causing degraded SSD performance, non-intelligent cloning software can have the same effect.

For testing, we ran all tests five times, dropping the highest and lowest results to finally average the middle three. And who said that college statistics class wouldn’t prove useful? If any anomalous results were seen, the test was run again. Given the complexities of modern computers, and especially today’s operating systems, we feel this provides the most accurate results possible.

Finally, we are seeking to constantly improve and expand upon our SSD testing methodology. We are activity seeking real-world workload scenarios that are bottlenecked by hard drives, so if you have any suggestions whatsoever or there is a program you would like to see included in our SSD content, then please drop by our forums and let us know! We are always looking to expand our SSD benchmarks and provide more useful and real-world results, and not just synthetic numbers.


Advertisement