OCZ Vertex 2 100GB

Print
by Robert Tanner on June 2, 2010 in Storage

Are you interested in equipping yourself with one of the fastest SSD’s on the planet? If so, then OCZ’s Vertex 2 is the one you want to keep an eye on. Thanks to its tweaked SandForce SF-1200 controller, the Vertex 2 is the fastest SSD we’ve ever tested, dominating almost every single one of our tests.

Page 8 – Real-World: Batch Tests

This test is perhaps the most important in our battery of benchmarks as it gives us truly real-world results. It is designed to simulate three kinds of multi-tasking scenarios in order to see how well the storage drive can cope with concurrent workloads. The better a drive performs here, the quicker and more responsive it should feel in everyday tasks. It shouldn’t need to be said that this is where SSDs shine and where traditional HDD bottlenecks are most directly experienced.

In addition to stressing the controller with a demanding, large queue to sort through (NCQ support helps here), this test will give any weak controller a complete panic attack by overwhelming it with simultaneous random read/write operations to juggle with large sequential writes, which is the Achilles’ heel of many cheaper SSDs.

Queue depth and IOPs optimizations have long been a strength of Intel’s own SSDs, however, there is enough differing types of workloads here that regardless of drive, every SSD should see some part of the workload playing to its own unique strengths and weaknesses in some fashion. A good-quality SSD should allow the system to remain responsive as the tasks are carried out in the background at all times. (Please for your own safety don’t try this at home on your HDD!)

Our Medium test consists of the following:

  • Playback of a 56MB FLAC music file in Winamp.
  • 50 ~8MB images queued to open in Photoshop CS4.
  • Opening of three Excel, three Word, and one PowerPoint files (various large sizes, for example one Excel file consists of an actual 72MB database).
  • Browsing to four different websites in Firefox.
  • Extraction of a 1GB RAR containing numerous “program file” folders.
  • Extraction of an 893MB ZIP containing 100 RAW images.
  • Transfer of a 7.16GB file to a second partition on the same drive
  • Viewing of two PDF documents.
  • Viewing of two small RAR utility archives
  • Execution of four small utilities

Our Heavy test consists of all-the-above in addition to a full Anti-Virus scan running concurrently in the background with the start of the test. The AV scan uses a static, unchanging 5.1GB test folder that contains 19,748 files and 2,414 sub-folders created from the Program Files directory.

Granted, even with a Core i7 processor, no computer user would be performing all of these tasks concurrently unless they wish to see their computer go unresponsive for up to 30 minutes at a time, but with an SSD, this is almost child’s play! If you think we are exaggerating then just look at what a fairly typical SATA HDD is able to offer, which is a representative sample for any other desktop HDD.

Last but not least, the Light test changes things slightly. This test is a batch file dropped into the Startup folder designed to load several programs as soon as Windows 7 reaches the desktop. This light test will open four websites in Firefox, load five images in Photoshop CS4, start playing our favorite 8 minute (56MB FLAC) music file in Winamp, and open a single large Word, Excel, and PowerPoint document, in addition to a single PDF file. For this specific test in particular, we start measuring from the moment the power button is pressed to the moment the last program and all files have been fully loaded ready for use.

In the time required for a regular hard disk drive computer to boot, it is possible for an SSD to boot and have fully loaded a multitude of programs and files that you regularly use, as the nearly two and a half minutes for the HDD clearly illustrates. Keep in mind we are talking about booting both the OS and several frequently used programs, the base boot time for the best SSDs in this platform is a rather sedate 55 seconds. While loading these programs only requires an extra twelve seconds, for a mechanical drive they in fact double the time required to boot.

What should make the light batch results all the more impressive is to realize that a motherboard featuring one of the latest chipsets, with the proper tuning should be capable of dropping the best 67 second boot times down to as little as 35-50 seconds depending on the overall system configuration.

For the medium scenario the results are unfortunately beginning to clump together around the seven minute mark. This shows that once again the platform itself is beginning to bottleneck the faster SSDs in our tests, these drives are just fast. It is a safe bet anyone considering a Vertex 2 will be building a top-notch system around one, it still is worth mentioning that it will require a fast Core i7 or Phenom II to really get the most out of this SSD.

One thing not shown by our graph is that with the medium scenario the Vertex 2 performed all five runs with results that fell within seven seconds of each other. To be frank we didn’t believe this level of consistency was even attainable given the nature of these tests. Weaker controllers such as the “V” drive’s JMicron controller by comparison had some results differing by as much as several minutes, which is clear evidence the controller was becoming overwhelmed from the workload. Clearly, with only a seven second deviation in results the Vertex 2 had no such problems!

Moving onto the most demanding scenario we finally see the best drives spread out a bit, although clearly we will need to redesign both our batch tests and bench platform if OCZ designs too many more drives like the Vertex 2. Speaking of which, the drive once again squeezes sixteen seconds off of the previous best result for a final average time of 7 minutes and 11 seconds. Given that the heavy batch scenario includes everything from large sequential writes to 5GB of random reads there is no doubt the Vertex 2 is still as well-rounded a drive as its predecessor, despite the drastically different controller technology between them.

Support our efforts! With ad revenue at an all-time low for written websites, we're relying more than ever on reader support to help us continue putting so much effort into this type of content. You can support us by becoming a Patron, or by using our Amazon shopping affiliate links listed through our articles. Thanks for your support!