AMD Athlon II X4 620 – Quad-Core at $99

Print
by Rob Williams on October 9, 2009 in Processors

Last month, AMD became the first company to bring a $99 quad-core processor to market, the Athlon II X4 620. The question, of course, is whether or not it delivers. At 2.60GHz, it looks to offer ample performance, but the lack of an L3 cache is sure to be seen in some of our tests. Luckily, the chip’s overclocking-ability helps negate that issue.

Page 2 – Test System & Methodology

At Techgage, we strive to make sure our results are as accurate as possible. Our testing is rigorous and time-consuming, but we feel the effort is worth it. In an attempt to leave no question unanswered, this page contains not only our testbed specifications, but also a fully-detailed look at how we conduct our testing. For an exhaustive look at our methodologies, even down to the Windows Vista installation, please refer to this article.

Test Machine

The below table lists our testing machine’s hardware, which remains unchanged throughout all GPU testing, minus the graphics card. Each card used for comparison is also listed here, along with the driver version used. Each one of the URLs in this table can be clicked to view the respective review of that product, or if a review doesn’t exist, it will bring you to the product on the manufacturer’s website.

Please note that for the particular CPU we’re looking at today, we’re not using the below-listed Gigabyte AM3 board, but rather the ASUS M4A785TD-M EVO. This was at AMD’s request, as this 785G mATX board is a perfect match for the new budget quad-core. It currently retails for $95, and is very feature-rich, so I can’t disagree.

Component
AMD AM2+/AM3 Test System
Processors

AMD Phenom II X4 965 Black Edition – Quad-Core, 3.40GHz, 1.325v
AMD Phenom II X4 955 Black Edition – Quad-Core, 3.20GHz, 1.325v
AMD Phenom II X3 720 Black Edition – Tri-Core, 2.80GHz, 1.325v
AMD Athlon II X4 620 – Quad-Core, 2.60GHz, 1.375v
Motherboard
Gigabyte MA790GP-DS4H – 790GX-based, F3 BIOS (01/13/09)
Memory

Corsair XMS3 DHX 2x2GB – DDR2-1066 5-5-5-15-2T, 2.10v
Graphics
Audio
On-Board Audio
Storage
Power Supply
Chassis
Display
Cooling
Et cetera

Component
Intel LGA1156 Test System
Processors Intel Core i7-870 – Quad-Core, 2.93GHz, ~1.25v
Intel Core i5-750 – Quad-Core, 2.66GHz, ~1.25v
Motherboard
Gigabyte P55-UD5 – P55-based, F3 BIOS (08/01/09)
Memory

Corsair XMS3 DHX 2x2GB – DDR3-1333 7-7-7-20-2T, 1.65v
Graphics
ATI Radeon HD 4870 512MB (Catalyst 8.11)
Audio
On-Board Audio
Storage
Power Supply
Chassis
Display
Cooling
Thermalright MUX-120
Et cetera

Component
Intel LGA1366 Test System
Processors
Intel Core i7-975 Extreme EditionQuad-Core, 3.33GHz, 1.30v
Intel Core i7-920 Quad-Core, 2.66GHz, 1.30v
Motherboard
ASUS Rampage II Extreme – X58-based, 0705 BIOS (11/21/08)
Memory

OCZ Gold 3x2GB – DDR3-1066 7-7-7-20-1T, 1.56v (920/940)
OCZ Gold 3x2GB – DDR3-1600 7-7-7-20-1T, 1.56v (965)
Graphics
Audio
On-Board Audio
Storage
Power Supply
Chassis
Display
Cooling
Et cetera

Component
Intel LGA775
Processors

Intel Core 2 Quad Q9650 – Quad-Core, 3.00GHz, 1.30v (Sim)
Intel Core 2 Quad Q9550 – Quad-Core, 2.83GHz, 1.30v (Sim)
Intel Core 2 Quad Q9400 – Quad-Core, 2.66GHz, 1.30v
Intel Core 2 Quad Q8200 – Quad-Core, 2.33GHz, 1.30v
Intel Core 2 Duo E8600 – Dual-Core, 3.33GHz, 1.30v
Intel Core 2 Duo E8500 – Dual-Core, 3.16GHz, 1.30v (Sim)
Intel Core 2 Duo E8400 – Dual-Core, 3.00GHz, 1.30v
Intel Pentium Dual-Core E5200 – Dual-Core 2.50GHz, 1.30v
Motherboard
ASUS Rampage Extreme – X48-based, 0501 BIOS (08/28/08)
Memory

Corsair XMS3 DHX 2x2GB – DDR3-1333 7-7-7-15-1T, 1.91v (1333FSB)
Corsair XMS3 DHX 2x2GB – DDR3-1066 6-6-6-15-1T, 1.91v (1066FSB)
Corsair XMS3 DHX 2x2GB – DDR3-800 6-6-6-15-1T, 1.91v (800FSB)

Graphics
Audio
On-Board Audio
Storage
Power Supply
Chassis
Display
Cooling
Et cetera

(Sim) represents models that were tested using a faster, but under-clocked processor. For example, for the Q9550, we used the QX9770, since the specs are identical all-around, except for the clock speeds. Those were adjusted appropriately, effectively giving us a Q9550 to test with.

When preparing our testbeds for any type of performance testing, we follow these guidelines:

    General Guidelines

  • No power-saving options are enabled in the motherboard’s BIOS.
  • Internet is disabled.
  • No Virus Scanner or Firewall is installed.
  • The OS is kept clean; no scrap files are left in between runs.
  • Hard drives affected are defragged with PerfectDisk 10 prior to a fresh benchmarking run.
  • Machine has proper airflow and the room temperature is 80°F (27°C) or less.
    Windows Vista Optimizations

  • User Account Control (UAC) and screen saver are disabled.
  • Windows Defender, Firewall, Security Center, Search, Sidebar and Updates are disabled.

To aide with the goal of keeping accurate and repeatable results, we alter certain services in Windows Vista from starting up at boot. This is due to the fact that these services have the tendency to start up in the background without notice, potentially causing slightly inaccurate results. Disabling “Windows Search” turns off the OS’ indexing which can at times utilize the hard drive and memory more than we’d like.

Application Benchmarks

To help test out the real performance benefits of a given processor, we run a large collection of both real-world and synthetic benchmarks, including 3ds Max, Adobe Lightroom, TMPGEnc Xpress, Sandra 2009 and many more.

Our ultimate goal is always to find out which processor excels in a given scenario and why. Running all of the applications in our carefully-chosen suite can help better give us answers to those questions. Aside from application data, we also run two common games to see how performance scales there, including Call of Duty 4 and Half-Life 2: Episode Two.

Game Benchmarks

In an attempt to offer “real-world” results, we do not utilize timedemos in any of our reviews. Each game in our test suite is benchmarked manually, with the minimum and average frames-per-second (FPS) captured with the help of FRAPS 2.9.5.

To deliver the best overall results, each title we use is exhaustively explored in order to find the best possible level in terms of intensiveness and replayability. Once a level is chosen, we play through repeatedly to find the best possible route and then in our official benchmarking, we stick to that route as close as possible. Since we are not robots and the game can throw in minor twists with each run, no run can be identical to the pixel.

Each game and setting combination is tested twice, and if there is a discrepancy between the initial results, the testing is repeated until we see results we are confident with.

The two games we currently use for our motherboard reviews are listed below, with direct screenshots of the game’s setting screens and explanations of why we chose what we did.

Call of Duty: World at War

1680×1050
2560×1600




Crysis Warhead

1680×1050
2560×1600




Half-Life 2: Episode Two

1680×1050
2560×1600

Support our efforts! With ad revenue at an all-time low for written websites, we're relying more than ever on reader support to help us continue putting so much effort into this type of content. You can support us by becoming a Patron, or by using our Amazon shopping affiliate links listed through our articles. Thanks for your support!

Rob Williams

Rob founded Techgage in 2005 to be an 'Advocate of the consumer', focusing on fair reviews and keeping people apprised of news in the tech world. Catering to both enthusiasts and businesses alike; from desktop gaming to professional workstations, and all the supporting software.

twitter icon facebook icon instagram icon